For example,Бобцов

LOW-COHERENCE REFLECTOMETRY OF FLUORESCENT RANDOM MEDIA

Annotation

Subject of Research. The paper considers the application of low-coherence reflectometry to the study of laser-pumped dyedoped random medium. The densely packed layers of titanium dioxide nanoparticles doped by rhodamine 6G are used as a laser-pumped dye-doped random medium. Method. The method of low-coherence reflectometry is based on analysis of the second and the third-order moments of intensity fluctuations of stochastic interference fields. Fluorescence radiation induced by the continuous laser pumping in fluorophor absorption band forms a stochastic interference pattern. The intensity distribution instochastic interference fields is described by the ratio of the coherence length of fluorescent radiation and the optical path length difference of the interfering field components. A confocal detection scheme is used for the stochastic interference analysis in the recorded signal. Main Results. The second and third-order moments of multiple scattered fluorescence intensity are calculated by experimentally obtained spatial fluctuations of fluorescent radiation limited by spectral range from 560 nm to 700 nm and spectral dependencies of moments are shown.The relationship is shown between the second and third-order statistical moments of the multiple scattered fluorescence radiation components and the coherence function and the probability density distribution of optical path lengths Practical Relevance. The considered method can be interpreted as an approach to the reconstruction of media optical transport characteristics based on comparison of the experimentally obtained statistical moments of fluorescence intensity fluctuations and theoretically-derived optical transport characteristics recovered by reverse Monte Carlo method. The study of radiation interaction with randomly inhomogeneous scattering media with high fluorescence quantum yield should be taken into account when analyzing functional and morphological states of complexly structured media, such as layers of biotissues, based on probing in the absorption bands of chromophores in spectroscopic methods.

Keywords

Articles in current issue